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Abstract
1. Harmful algal blooms (HABs) formed by freshwater cyanobacteria pose risks to 

human and ecological health globally. Some cyanobacteria form overwintering cells 
that remain in the sediment during non- ideal growth conditions and provide an in-
oculum for HABs during the growing season, perpetuating the cyanobacterial life 
cycle. Preventative management targeted at decreasing the viability of overwinter-
ing cells is an attractive strategy for limiting HAB formation and decreasing risks.

2. However, this approach is novel, and information is needed for sampling, identi-
fication and enumeration of overwintering cells in sediments as well as methods 
for determining if overwintering cells have the potential to contribute to HAB 
formation. Peer reviewed literature related to these topics are available; yet 
these data need to be synthesized and placed into the context of management. 
Therefore, a strategic review was conducted to inform methods and data needs 
for this preventative strategy.

3. To sample overwintering cells, corers or dredges are used to collect surficial 
(0–2 cm)	sediment	 layers	containing	overwintering	cells.	 Identification	and	enu-
meration of overwintering cells via light microscopy are aided by dilution, sieving, 
or density separation of cells from sediment. Incubation studies which simulate 
environmental conditions triggering akinete germination and cell growth provide 
evidence of overwintering cell viability.

4.	 Critical	 environmental	 conditions	 are	 light	 (≥0.5 μmol m−2 s−1) and temperature 
(20–30°C) for triggering akinete germination and growth of quiescent vegetative 
Microcystis sp. cells, respectively. Limited information was available on the roles 
of mixing and dissolved oxygen as environmental conditions for germination and 
growth.

5. Synthesized information can be used to identify potential areas of concern in 
which overwintering cells are contributing to HABs. Additionally, this informa-
tion can be used to design incubation studies in which field collected sediments 
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1  |  INTRODUC TION

Harmful algal blooms (HABs) are visible accumulations of planktonic 
cyanobacteria in freshwater ecosystems, which have been recog-
nized as a global threat (Carmichael, 2008; Chorus & Welker, 2021; 
Hou et al., 2022;	Svirčev	et	al.,	2019). Cyanobacteria can produce 
toxins that impact the liver, kidneys and nervous system. These 
toxins have been detected in all continents and have attributed to 
adverse effects and mortalities in humans, domestic animals, live-
stock, and ecological receptors (e.g. elephants, giraffes, deer) within 
all continents apart from Antarctica (Backer et al., 2013; Jungblut 
et al., 2006; Veerman et al., 2022; Wood, 2016). Additionally, impacts 
from HABs have been experienced in terms of economic losses when 
waterways in proximity to tourist destinations (Steffensen, 2008) 
and private properties (Environmental Consulting & Technology, 
Inc. [ECT], 2015; Paerl et al., 2018) become inundated. Significant 

costs have also occurred due to the need to mitigate toxin concen-
trations in drinking water that approach or exceed drinking water 
health advisories. For example, Toledo, Ohio, [United States] spent 
approximately $3 million to $4 million in 2013 to mitigate toxin con-
centrations in potable water (ECT, 2015).

To mitigate risks from HABs and their toxins, management ac-
tions are implemented at a range of spatial and temporal scales 
from large- scale watershed management of nutrients to small- 
scale management of municipal water treatment facilities where 
toxins are removed from potable water (Interstate Technology & 
Regulatory Council (ITRC), 2021; Sklenar et al., 2016; United States 
Environmental Protection Agency (USEPA), 2015). Part of the man-
agement solution should include prevention. A novel preventative 
approach is to target overwintering cells in sediments with the goal 
of interrupting the cyanobacterial life cycle to delay the onset and 
decrease the severity of HABs (Calomeni et al., 2022; Figure 1). This 

containing overwintering cells are placed in ideal environmental conditions for 
germination and growth and cyanobacteria transferring to the water column are 
measured over time. These data inform investigations of areas that are candidates 
for preventative management and measurements of overwintering cell responses 
to management.

K E Y W O R D S
akinete, blue- green algae, control, harmful algal bloom, Microcystis, Planktothrix, viability

F I G U R E  1 Life	cycle	of	akinete	producing	cyanobacteria	with	preventative	treatment	decreasing	inoculum	for	HABs.	Briefly,	the	life	
cycle consists of a series of steps: (1) akinetes remain quiescent in sediments during non- ideal growth conditions (e.g. winter), (2) germling 
cells release from akinetes (i.e. germination) and suspend in the water column (i.e. recruitment) or akinetes become suspended in the 
water column where they germinate, (3) cyanobacteria growth produces a harmful algal bloom (HAB), (4) akinetes are produced and HAB 
senesces, (5) dense akinetes settle to the sediment phase (Hense & Beckmann, 2006; Kaplan- Levy et al., 2010). Preventative management 
may decrease the viability of akinetes in the sediment phase leading to lower germination rates. Yellow arrow indicates a preventative 
treatment (e.g. chemical, physical or biological) and yellow ovals surrounding akinetes in the right panel indicate cells made non- viable from 
preventative treatments. Cyanobacteria such as Microcystis sp. and Planktothrix sp. do not form akinetes. However, the vegetative cells 
remain quiescent in sediments during the winter and similarly contribute to bloom formation.
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preventative approach is aimed at targeting the resting benthic stage 
of the life cycle, which has to date been largely ignored (Cottingham 
et al., 2021). Common HAB producing cyanobacteria that are known 
to form specialized overwintering cells or akinetes are of the order 
Nostocales (e.g. Aphanizomenon sp., Dolichospermum sp. [formerly 
Anabaena], Raphidiopsis sp. [formerly Cylindrospermopsis]). Other 
common HAB producing cyanobacteria, including Microcystis sp. 
and Planktothrix sp., do not produce akinetes, but overwinter as non- 
specialized vegetative cells that remain quiescent at depth during 
non- ideal growth conditions and contribute to HAB formation when 
conditions improve (Barbiero & Welch, 1992; Fallon & Brock, 1981; 
Kitchens et al., 2018;	Micheletti	et	al.,	1998; Preston et al., 1980). 
Akinetes and vegetative cells that remain quiescent under non- ideal 
growth conditions and provide a viable cyanobacterial inoculum 
for planktonic HABs are collectively termed overwintering cells 
throughout this manuscript. Therefore, overwintering cells refers to 
both akinetes and quiescent vegetative cells, akinetes refers to the 
specialized cells produced by the cyanobacteria order Nostocales, 
and quiescent vegetative cells refers to non- specialized resting cells 
in this manuscript.

Because preventative management of overwintering cells is 
novel, there are limited resources available to provide guidance for 
implementation. There are three preliminary knowledge gaps that 
need to be addressed, (1) how to sample, detect and identify over-
wintering cells, (2) what environmental conditions trigger germina-
tion and growth of overwintering cells and (3) how to determine if 
overwintering cells are viable and have the potential to contribute 
to HAB formation. Since overwintering cells are quiescent, they are 
challenging to detect and often evade traditional monitoring proto-
cols that tend to focus on HABs in the planktonic phase (e.g. visible 
scums, blooms; Wood et al., 2020). Identification of overwintering 
cells provides a line of evidence for potential inocula contributing to 
HAB formation. However, the presence of overwintering cells does 
not equate to viability, germination, and growth. In fact, overwinter-
ing cells (i.e. akinetes) could remain quiescent in sediments for more 
than	 50 years	 (Livingstone	 &	 Jaworski,	 1980; Wood et al., 2008, 
2021)	and	reportedly	after	1800 years	(Legrand	et	al.,	2019) in sed-
iment cores before germinating under suitable environmental con-
ditions. Germination refers to the event where a germling (i.e. early 
stage of a cyanobacterial cell) emerges from the envelop that sur-
rounds the akinete and could contribute to a HAB. Identifying en-
vironmental conditions that lead to overwintering cell germination 
and growth will be critical to provide additional lines of evidence 
for areas that have the potential to provide an inoculum for HABs. 
Sediment zones that contain viable overwintering cells and suitable 
environmental conditions for overwintering cell germination and 
growth are termed areas of concern and would be candidates for 
preventative management (Calomeni et al., 2022).

The aim of this manuscript is to conduct a strategic literature 
review to inform field monitoring programs and the preventative 
management of overwintering cells. Specifically, the objectives of 
this review were to (1) determine methods for sampling, detecting 
and identifying overwintering cells within sediments, (2) identify 

environmental conditions (e.g. light, temperature, nutrients, mixing 
[movement of cells from sediment to water column] and dissolved 
oxygen) necessary for the germination and growth of overwintering 
cells and (3) discuss how environmental conditions can be used to 
inform identification of areas of concern and responses of overwin-
tering cells to management action.

2  |  STR ATEGIC LITER ATURE RE VIE WS

2.1  |  Sampling and identification methods for 
overwintering cells

A strategic literature review was conducted of Google Scholar for 
articles, with the following search terms: akinetes, cyanobacteria, 
detect, identification, Microcystis, overwintering, resting, sample, 
sediment.	 Articles	 included	 those	 published	 from	 1974	 to	 2021.	
Titles and abstracts were reviewed to determine if manuscripts fit 
within	the	scope	of	this	review.	Mainly,	manuscripts	were	excluded	
from this review if their focus was not on overwintering cells of 
freshwater cyanobacteria (e.g. cyanophages, bacteria, toxins). The 
focus of this literature review was on overwintering cells, collec-
tively, as this information may be used to inform the identification 
of areas of concern for which akinetes and quiescent vegetative 
cells can serve as inocula for blooms. A secondary review of meth-
ods was conducted for manuscripts retained during this initial 
review.	Manuscripts	 included	 in	 this	 study	were	 selected	 on	 the	
basis that relatively standard and common methods were used that 
could be implemented in laboratories that conduct enumeration of 
planktonic algal cells using light microscopy with few modifications 
for enumeration of benthic overwintering cells. Therefore, meth-
ods included in this manuscript use widely available tools and have 
a minimal cost barrier.

2.2  |  Environmental conditions for 
overwintering cells

Environmental conditions for akinetes germination and quiescent 
vegetative cell growth were defined a priori as light, temperature, nu-
trients (i.e. nitrate, ammonium and phosphate), mixing and dissolved 
oxygen. Strategic literature reviews were performed separately for 
akinetes and quiescent vegetative cells as these cell types are dif-
ferent in terms of both structure and function and may have dif-
ferent environmental conditions leading to germination and growth, 
respectively. Akinetes differ from vegetative cells as they are spe-
cialized and are often larger and denser (Adams & Duggan, 1999; 
Sukenik et al., 2012). Akinetes also contain additional energy storage 
molecules (i.e. glycogen and cyanophycin) and are surrounded by a 
thickened cell envelop to remain viable during unfavourable growth 
conditions (Fay, 1988; Sukenik et al., 2012). Quiescent vegetative 
cells are morphologically like vegetative cells present in HABs with 
a few exceptions (Reynolds et al., 1981; Verspagen et al., 2004). 
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Quiescent vegetative cells of Microcystis sp. have been observed 
with aerotopes (i.e. gas vesicles), chlorophyll- a and glycogen gran-
ules. However, the photosynthetic efficiency and the number of en-
ergy storage molecules are decreased.

2.3  |  Environmental conditions for 
germination of akinetes

To identify environmental conditions needed for the germination of 
akinetes a search of Google Scholar was conducted, using the follow-
ing search terms: akinete, cyanobacteria, germination, recruitment, 
resting in combination with specific search terms for environmental 
conditions of interest. These search terms were light, temperature, 
nutrients, ammonia, nitrate, phosphate, mixing, recruitment, wind, 
wave,	migration	and	dissolved	oxygen	 (DO).	Manuscripts	 included	
those	published	from	1976	to	2021.	Titles	and	abstracts	were	 ini-
tially reviewed to ensure that only genera that are commonly as-
sociated with HABs were included (Beaver et al., 2018; Graham 
et al., 2008, 2020; Rosen & St. Amand, 2015).

A secondary review of methods was conducted to determine if 
experimental designs were unconfounded. Laboratory and meso-
cosm studies were included in this review as they allow for the isola-
tion of individual environmental conditions or independent variables 
while other conditions remain constant (i.e. unconfounded; Graney 
et al., 1995). Results from field studies were used as supporting in-
formation when unconfounded data were limited and these studies 
were specifically identified in subsequent sections. The response 
measurement for akinete germination was visual confirmation via 
light microscopy. Visualization of a newly emerged cyanobacteria 
cell from the akinete envelop by light microscopy has been reported 
by multiple authors (Baker & Bellifemine, 2000; Kim et al., 2005; 
Rolland & Vincent, 2014).

2.4  |  Environmental conditions for growth of 
quiescent vegetative cells

A separate Google Scholar search was performed for quiescent 
vegetative cells and search terms were: overwintering, resting, qui-
escent, Aphanocapsa, Microcystis, Planktontrix, Pseudanabaena and 
Woronichinia with specific search terms for environmental conditions 
of	interest	as	previously	listed.	Manuscripts	included	those	published	
from	1975	to	2021.	The	methods	were	reviewed	to	(1)	determine	if	
experimental designs were unconfounded (i.e. laboratory and me-
socosm studies) and (2) discern that the measurement endpoint was 
inclusive of growth and not identification of cells alone. Identification 
of cells at one time point may overestimate the number of quies-
cent vegetative cells capable of growth as some of these cells may 
later degrade. Therefore, response measurements needed to include 
measurements over multiple time points. Only studies that presented 
results of vegetative cells over time were included in this review.

3  |  SAMPLING , DETEC TON AND 
IDENTIFIC ATION OF OVERWINTERING 
CELL S

3.1  |  Sampling

When planktonic HABs senesce, overwintering cells will begin to 
settle and become impacted by the same physical forces (e.g. re-
suspension, water velocity) that spatially distribute detritus and 
sediment. For example, Dolichospermum spp. akinete sizes range 
from	5	to	50 μm	with	most	akinetes	less	than	20 μm (e.g. Komárek & 
Zapomělová,	2007; Figure 2). Based on Stokes' law, it is anticipated 
that akinetes of these size classes would be associated with silt (4 to 
63 μm) size classes. Higher densities of akinetes have been measured 

F I G U R E  2 Microscopic	images	of	
overwintering cells. Akinetes in planktonic 
Dolichospermum (formerly Anabaena) in a 
water sample (a) and in a diluted sediment 
sample (b). Arrows point to akinetes. 
Quiescent vegetative cells of Microcystis 
sp. (c) and Planktothrix sp. (d) in diluted 
sediment samples.
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in sediments dominated by clay (<4 μm) and silt (Huber, 1984; 
Kravchuk & Ivanova, 2009). Similarly, high densities of akinetes have 
been reported in areas with slower water velocities allowing smaller 
particles to settle such as in deposition zones upstream of a dam 
(Cirés et al., 2013) and areas with dense submerged aquatic vegeta-
tion (Kravchuk & Ivanova, 2009). Higher densities of overwintering 
cells have also been reported in areas with deeper water columns 
(Cirés et al., 2013; Legrand et al., 2017; Reynolds et al., 1981).

Within a sediment profile, higher densities of overwintering cells 
are	 at	 approximately	0 cm	 to	2 cm	 from	 the	 sediment–water	 inter-
face (Kravchuk & Ivanova, 2009; Takamura et al., 1984; Tsujimura 
& Okubo, 2003). Densities of overwintering cells in sediment range 
by 5 orders of magnitude (Cirés et al., 2013). Units used to express 
overwintering cell densities range and are represented in terms 
of cells or akinetes per weight or volume of sediment or surface 
area (Brunberg & Blomqvist, 2002; Cirés et al., 2013; Kravchuk & 
Ivanova, 2009; Ramm et al., 2012). Sampling of sediments contain-
ing overwintering cells along the shoreline at wadable depths can 
be conducted with hand- held devices such as a shovel or hand core 
(Calomeni et al., 2022). Sampling at greater depths can be performed 
with a remotely activated device such as Wildco [Wildco Supply 
Company®, FL, USA], Eckman or Ponar grab samplers (Calomeni 
et al., 2018, 2022; Lind, 1974).

3.2  |  Detection and identification

Common HAB genera that produce akinetes include (Anabaenopsis, 
Aphanizomenon, Dolichospermum [formerly Anabaena]), Nodularia and 
Raphidiopsis. Common HAB producing genera that can have quies-
cent vegetative cells include Microcystis, Planktothrix and Woronichinia 
(Table 1). To identify and enumerate overwintering cells using light 
microscopy, cells are separated from the sediment matrix. Effective 
methods for separating cells from sediment are dilution, particle size 
and density separation. Dilution is a relatively simple method for sepa-
rating overwintering cells and researchers have utilized 1:9, 1:20, 1:50 
and	1:100 g	sediment	to	ml	water	 (e.g.	 filtered	site	water	or	distilled	
water to remove planktonic algae; Bunting et al., 2016; Calomeni 
et al., 2023; Cirés et al., 2013; Eilers et al., 2004; Huber, 1984; Rücker 
et al., 2009; Tsujimura & Okubo, 2003). Filtration has been used to sep-
arate overwintering cells from sediments using size differences (Cirés 
et al., 2013; Rücker et al., 2009). However, knowledge of the approxi-
mate size of the target cell is necessary and with a mixed assemblage 
collected from the field, this may be challenging. Density separation 
with relatively inert polyvinylpyrrolidone coated silica sols have also 
been used (Borges et al., 2016; Cirés et al., 2013; Legrand et al., 2017; 
Verspagen et al., 2004). Sonication may be necessary for disaggregat-
ing overwintering cells from sediments that are tightly bound (Legrand 

TA B L E  1 Order,	genus,	potential	toxin	target	(i.e.	organ	or	organ	system)	and	overwintering	cells	of	common	HAB-	producing	
cyanobacteria (citations for common HAB- producing cyanobacteria: Beaver et al., 2018; Graham et al., 2008, 2020; Rosen & St. 
Amand, 2015).

Order Genus
Potential toxin 
target

Overwintering cell 
type Referencec

Chroococcales Microcystis Liver Vegetative Preston et al. (1980), Reynolds et al. (1981) 
and Kitchens et al. (2018)

Nostocales Anabaenopsis Liver Akinete Komárek (2010)

Aphanizomenon Liver, Neuro Akinete Komárek (2010)

Cuspidothrix Neuro Akinete Komárek (2010)

Cylindrospermopsis Liver Akinete Komárek (2010)

Dolichospermuma Liver, Neuro Akinete Wacklin et al. (2009)

Gloeotrichia Liver Akinete Komárek	and	Mareš	(2012)

Nodularia Liver Akinete Komárek	and	Mareš	(2012)

Nostoc Liver Akinete Rajaniemi et al. (2005)

Raphidiopsis Liver, Neuro Akinete Komárek (2010)

Sphaerospermopsisb Liver, Neuro Akinete Komárek	and	Mareš	(2012)

Oscillatoriales Planktothrix Liver, Neuro Vegetative Holland and Walsby (2008)

Synechococcales Aphanocapsa Liver Vegetatived Rolland and Vincent (2014), Roos et al. (1991)

Pseudanabaena Liver Vegetatived Agha et al. (2016)

Woronichinia Liver Vegetative Trimbee and Harris (1984) and Head et al. 
(1999)

aFormerly planktonic species of Anabaena.
bFormerly Anabaena and Aphanizomenon.
cReference associated with documented overwintering cell type.
dPlanktonic and benthic populations have been observed. The extent that benthic populations overwinter and transfer to the planktonic phase has 
not been reported in the literature identified during this review.
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et al., 2017; Wood et al., 2021) prior to dilution, filtration or density 
separation techniques. However, careful consideration of sonication 
duration and intensity is important to minimize or avoid damage to cells 
(Rajasekhar et al., 2012).

4  |  ENVIRONMENTAL CONDITIONS 
TRIGGERING GERMINATION OF AKINETES

4.1  |  Light

There is consensus among the published literature that light is an 
important driver for the germination of akinetes (Huber, 1985; 
Karlsson- Elfgren et al., 2004; Kim et al., 2005; Rai & Pandey, 1981; 
Sutherland et al., 1985; Yamamoto, 1976). This is evident as no 
germination or low (6%) germination percentages has been found 
to occur in darkness (Huber, 1985; Karlsson- Elfgren et al., 2004; 
Kim et al., 2005; Yamamoto, 1976) and relatively low illumi-
nances (100 LUX) and photosynthetic photon flux density (PPFDs) 
(0.5 μmol m−2 s−1) were necessary for germination (Table 2). For 
context, the illuminance measured in daylight can range from 100 
LUX	(approximately	2 μmol m−2 s−1) on an overcast day to 130,000 
LUX	 (approximately	 2500 μmol m−2 s−1) in direct sunlight (Hänel 
et al., 2018) and depends on latitude and season. The recommended 
PPFD	by	the	USEPA	for	algal	growth	studies	is	86 μmol m−2 s−1 (il-
luminance of 4306 LUX; United States Environmental Protection 
Agency (USEPA), 2002)	 and	 is	 approximately	 170	 times	 greater	
than the lowest reported PPFD that resulted in akinete germi-
nation.	 Maximum	 germination	 percentages	 among	 the	 reviewed	
studies ranged between 20% and 96% corresponding with illumi-
nances of 1200 LUX to 3000 LUX and 50% to 90% germination 
corresponding with photosynthetic photon flux densities (PPFDs) 
of	5	to	100 μmol m−2 s−1 (Table 2).

4.2  |  Temperature

Germination occurred over a wide range of temperatures from 5°C 
to 35°C (Table 2; Huber, 1985; Karlsson- Elfgren et al., 2004; Kim 
et al., 2005; Park et al., 2018; Yamamoto, 1976); however, the re-
viewed data indicate that maximum germination occurred at 22°C to 
27°C	for	most	cyanobacteria	investigated	(e.g.	Nodularia spumigena, 
Anabaena cylindrica and Dolichospermum circinale). The exception to 
this temperature range occurred in germination of Dolichospermum 
flos- aquae akinetes from a Korean reservoir which had maximum 
growth at approximately 10°C in the laboratory and at comparable 
temperatures in situ (Kim et al., 2005). Although there may be some 
cyanobacteria (e.g. Dolichospermum flos- aquae) that are suited for 
lower temperatures (i.e. 10°C), these results suggest that for multi-
ple genera, the maximum germination of akinetes would be induced 
when	temperatures	reach	22°C	to	27°C	for	3	to	5-	day	consecutively	
(Fay, 1988; Huber, 1985; Park et al., 2018; Yamamoto, 1976).

4.3  |  Nutrients

The reviewed data suggest that nutrient concentrations (e.g. 
nitrate and phosphate) are unlikely to play a critical role in 
triggering akinete germination. To produce known nutrient con-
centrations for experimentation, studies used culture media with 
nitrate, ammonium and phosphate salts added as nominal con-
centrations (Huber, 1985;	Myers	et	 al.,	2010; Park et al., 2018; 
Rai & Pandey, 1981; Sutherland et al., 1985; Yamamoto, 1976). 
Multiple	 studies	 reported	 germination	 with	 no	 added	 nutri-
ent sources (i.e. no sediment and nutrient free culture media; 
Table 2; Huber, 1985; Park et al., 2018; Sutherland et al., 1985; 
Yamamoto, 1976). However, akinetes may germinate at higher 
percentages when nutrient concentrations are within specific 
ranges. For instance, one study reported that phosphate con-
centrations	between	27 μg P L−1 as K2HPO4	and	6937 μg P L−1 as 
K2HPO4 as nominal concentrations had no impact on the germina-
tion percentage for Nodularia spumigena akinetes (Huber, 1985). 
Another study reports a dose–response relationship between 
phosphate concentrations and percent germination of Nodularia 
spumigena	akinetes	(Myers	et	al.,	2010). The greatest germination 
percentage (40%) occurred at nominal concentrations of 1500 
to	2500 μg P L−1 as K2HPO4	 (Myers	et	al.,	2010). Similarly, high 
germination rates (90%–95%) occurred with no known addition 
of	nitrate	to	concentrations	of	nitrate	of	9996 μg N L−1 as NaNO3 
(Huber, 1985.) Alternatively, a dose–response relationship was 
observed for nominal concentrations of nitrate and germina-
tion	in	Myers	et	al.	(2010). The greatest percent germination (i.e. 
17%	to	25%)	was	observed	at	nitrate	amendments	from	1500	to	
3000 μg N L−1 as NaNO3.

4.4  |  Mixing

Mixing	or	the	movement	of	cyanobacteria	cells	from	the	sediment	to	
the water column is necessary for the formation of HABs from ben-
thic overwintering populations. This movement can occur from pas-
sive suspension by thermocline or wind driven turnover as well as 
active suspension from formation of gas vacuoles (Karlsson- Elfgren 
et al., 2004). Karlsson- Elfgren et al. (2004), conducted laboratory ex-
periments	with	 test	 tubes	 containing	 filtered	 site	water	 (25 mL)	 and	
site-	collected	 sediment	 (3 mL	 collected	 with	 a	 7 cm	 diameter	 core	
sampler) with Gloeotrichia enchinulata akinetes. When sediments were 
intentionally mixed with surficial water over the course of a 20- day 
experiment, cyanobacteria in the water column were identified ear-
lier	(2–4 days)	relative	to	unmixed	treatments.	Greater	cyanobacteria	
biovolumes (e.g. in one treatment two orders of magnitude greater) 
were measured in the water column in mixed treatments relative to the 
unmixed treatments. In theory, mixing surficial sediments may expose 
more viable overwintering cells to suitable environmental conditions 
for germination (e.g. light) that may have been sequestered by over-
lying sediment. Yet, there are relatively limited data investigating the 
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specific causal mechanisms of turbulent mixing at the sediment–water 
interface and relationship to akinete germination.

4.5  |  Dissolved oxygen

Additionally, there are limited data from controlled laboratory 
experiments on the role of dissolved oxygen concentrations in 
akinete germination. Kim et al. (2005) measured akinete ger-
mination with different environmental conditions in controlled 
laboratory experiments and within an aquatic system (Seokchon 
Reservoir, Seoul, Korea). However, dissolved oxygen concen-
trations were not evaluated in the laboratory, but monitored in 
the field; therefore, the impact of oxygen concentrations could 
not be isolated. Within Seokchon Reservoir, dissolved oxygen 
concentrations	 remained	aerobic	 (7 mg O2/L to saturation limit) 
throughout the monitoring period and no correlations were ob-
served between akinete germination and oxygen concentrations 
(Kim et al., 2005).

5  |  ENVIRONMENTAL TRIGGERS FOR 
GROW TH OF QUIESCENT VEGETATIVE 
CELL S

The published literature related to the impacts of environmental 
conditions on quiescent vegetative cell growth largely pertains to 
the cyanobacterial genus Microcystis (Borges et al., 2016;	Misson	&	
Latour, 2012; Reynolds et al., 1981; Yang et al., 2020). Therefore, 
this summary focuses on environmental conditions impacting the 
growth of quiescent vegetative cells of Microcystis sp. associated 
with the sediment phase.

5.1  |  Light

The impacts of light on quiescent vegetative Microcystis sp. growth 
ranged at a function of sample location within and among freshwater 
ecosystems (Borges et al., 2016;	Misson	&	Latour,	2012; Reynolds 
et al., 1981). Light ranging from 600 to 1800 LUX positively impacted 

TA B L E  2 Reported	environmental	conditions	(light,	temperature,	nutrients,	mixing,	and	dissolved	oxygen)	influencing	akinete	
germination.

Environmental 
condition

Range for 
germination

Value for maximum 
germinationa

Maximum percent 
germination Units Reference

Lightb 100–8000 1200- 3000 20%–96% LUX Yamamoto (1976), Rai and Pandey (1981) 
and Sutherland et al. (1985)

0.5–100 5–100 50%–90% μmol m−2 s−1 Huber (1985), Kim et al. (2005) and 
Myers	et	al.	(2010)

Temperature 5–35 10–27 20%–85% °C Yamamoto (1976), Huber (1985), 
Fay (1988), Kim et al. (2005) and 
Park et al. (2018)

Nutrients

Nitrate No nitrate 
source—9996

No nitrate 
source—9,996c

90%–95% μg N L−1 as NaNO3 Yamamoto (1976), Rai and 
Pandey (1981), Huber (1985), 
Sutherland et al. (1985),	Myers	
et al. (2010) and Park et al. (2018)

Ammonium No ammonium source 
to 630d

No added to 630 60%–85% μg N L−1 as NH4Cl Huber (1985)

Phosphate No phosphate 
source—6937

27–6,937c 75%–95% μg P L−1 as K2HPO4 Rai and Pandey (1981), Huber (1985), 
Sutherland et al. (1985),	Myers	
et al. (2010) and Park et al. (2018)

Mixing Mixing	or	no	mixing Mixing Germination occurred 
earlier and had a larger 
biovolume in the 
aqueous phase with 
mixed samples

Not applicable Karlsson- Elfgren et al. (2004)

Dissolved oxygen Insufficient data

aThe value of the environmental conditions that resulted in the maximum germination response from each study (where applicable) is reported as a 
range.
bUnits for illuminance and photosynthetic photon flux density (PPFD) were not converted among studies. Illuminances and PPFDs represent those 
that were reported in the individual study.
cMyers	et	al.	(2010)	observed	a	positive	correlation	between	nitrate	and	phosphate	concentrations	and	akinete	germination.	Maximum	germination	
(10%–25%	for	nitrate	and	20%–45%	for	phosphate)	was	observed	at	1500	and	3000 μg N L−1 as NaNO3	and	1500	and	2500 μg P L−1 as K2HPO4.
dPercent	germination	declined	with	ammonium	concentrations	in	excess	of	630 μg N L−1 as NH4Cl.
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8 of 14  |     CALOMENI-ECK et al.

the growth of quiescent vegetative Microcystis sp. from a Lake lo-
cated in England (Reynolds et al., 1981). In Reynolds et al. (1981), 
colony densities (colony mL−1) were greater at 600 and 1800 LUX 
relative	 to	 dark	 controls	 from	10	 to	 31 days.	 Thirty-	one	 days	 post	
experiment initiation, colony densities were approximately 1.4 times 
greater at 600 and 1800 LUX relative to dark controls. No signifi-
cant differences in terms of percent recruitment (2.3%–3.3%) were 
reported	by	Misson	and	Latour	(2012) at relatively low light intensi-
ties	(10 μmol m−2 s−1) and in dark controls using sediments containing 
quiescent vegetative Microcystis sp. from a lake in France. In Borges 
et al. (2016), two sediment samples were collected from different 
locations, near- shore and mid- lake, within a lake in New Zealand. 
For near- shore samples, planktonic cell densities remained low 
(<2000 cells mL−1) and were similar in dark controls and a series of 
4	increasing	light	intensities	ranging	from	1.5	to	100 μmol m−2 s−1. In 
contrast, for sediments collected from near- shore, planktonic cell 
densities	were	greater	in	treatments	with	light	(50–100 μmol m−2 s−1) 
relative	 to	dark	controls.	At	12 days,	planktonic	cell	densities	were	
1.4	times	greater	with	a	light	intensity	of	100 μmol m−2 s−1 relative to 
dark controls (Table 3).

5.2  |  Temperature

The growth of quiescent vegetative cells of Microcystis sp. was 
observed over a wide range of temperatures (4°C–35°C; Borges 
et al., 2016; Reynolds & Walsby, 1975; Yang et al., 2020; Table 3). 
Yang et al. (2020) reported rapid growth rates at temperatures 
ranging from approximately 15°C to 35°C, with the highest rate 
occurring at temperatures ranging from 20°C to 30°C in the labo-
ratory. Elevated phycocyanin concentrations also occurred in the 
field at temperatures ranging from 24°C to 28°C (Yang et al., 2020). 
Borges et al. (2016) observed rapid growth rates at temperatures 
ranging from 16°C to 25°C in the laboratory setting. Reynolds and 
Walsby (1975) report initial bloom appearance in the field at tem-
peratures ranging from 15°C to 18°C.

5.3  |  Nutrients

Studies demonstrating the responses of quiescent vegetative cells 
of Microcystis sp. to nutrient concentrations are limited (Table 3). In 

TA B L E  3 Reported	environmental	conditions	(light,	temperature,	nutrients,	mixing,	and	dissolved	oxygen)	influencing	growth	of	quiescent	
vegetative cells of Microcystis sp.

Environmental 
condition Range evaluated

Value for 
maximum 
response Maximum response Units Reference

Light Dark control—1800 600–1800 Colony concentration 1.4 times 
greater than dark control

LUX Reynolds et al. (1981)

Dark control—100 100 No impact on cell density to 1.4 
times greater cell densitya 
relative to dark control

μmol m−2 s−1 Misson	&	Latour,	2012 and Borges 
et al. (2016)

Temperature 4–35 20–30 Increased growth rate observedb °C Reynolds and Walsby (1975), 
Borges et al. (2016), Yang 
et al. (2020) and Cai 
et al. (2021)

Nutrients

Nitrate and 
ammoniumc

40–1900 500 Order of magnitude increase 
in Microcystis number 
enclosure−1 relative to other 
concentrations evaluated

μg N L−1 as nitrate 
and ammonia

Ståhl- Delbanco et al. (2003)

Total phosphorusc 30–230 130 μg P L−1 as total 
phosphorus

Ammonium No ammonium 
source—5000

100–500 No impact on cell density 
to 2.0 times greater cell 
density relative to other 
concentrations evaluated

μg N L−1 as NH4Cl Borges et al. (2016)

Mixing Mixing	or	no	mixing Mixing Statistically significant (p < 0.01)	
increase in the ratio of cells in 
the water column to cells in 
the sediment relative to the 
treatment without mixing

Not applicable Misson	and	Latour	(2012)

Dissolved oxygen Insufficient data

aSediments were collected from near- shore and mid- lake. Light impacted cell densities for mid- lake samples and not near- shore samples (Borges 
et al., 2016).
bGrowth rate significantly greater (p < 0.05)	at	temperatures	from	15	to	35°C	relative	to	4–14°C	(Yang	et	al.,	2020).
cAmendments of N (amended as Ca(NO3)2 and measured as nitrate and ammonium) and P (amended as KH2PO4 and measured as total phosphorus) 
added to the same enclosures in situ (Ståhl- Delbanco et al., 2003). The impact of N and P as separate nutrients cannot be discerned from this study.
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    |  9 of 14CALOMENI-ECK et al.

Ståhl- Delbanco et al. (2003), nutrient cycling between the sediment 
and water were evaluated using enclosures inserted into sediments 
maintaining contact between sediment and water (filtered site water) 
phases. Nutrient concentrations were measured following additions of 
nitrate and phosphate to the enclosures and the number of Microcystis 
sp. cells enclosure−1 was measured. Microcystis sp. in the unamended 
enclosures	 was	 less	 than	 0.1 × 108 cells	 enclosure−1. Microcystis sp. 
was	an	order	of	magnitude	(1.1	to	1.6 × 108 cells	enclosure−1) greater in 
the	enclosures	with	500 μg N L−1	as	nitrate	and	ammonium	and	130 μg 
P L−1 as total phosphorus relative to all other enclosures. In a different 
study, lake sediments from two locations (near- shore and mid- lake) 
were collected with a Ponar grab sampler and placed in experimental 
chambers with milli- Q water prior to amendments with ammonium 
chloride (Borges et al., 2016). Relatively low cell densities were meas-
ured	(≤2000 cells mL−1) in unamended controls and in all amendments 
(series	of	5	amendments	from	100	to	5000 μg N L−1 as NH4Cl) using 
near- shore sediment samples. For the mid- lake sediment sample, cell 
densities	doubled	at	100	to	500 μg N L−1 as NH4Cl relative to the una-
mended	control	and	1000	 to	5000 μg N L−1 as NH4Cl. These results 
suggest that there is a relationship between Microcystis sp. cell densi-
ties and concentrations of nitrate, ammonia and phosphate.

5.4  |  Mixing

Authors have discussed the role of the physical transfer of quiescent 
vegetative cells of Microcystis sp. from the sediment to the water in 
forming planktonic blooms (Borges et al., 2016;	Misson	&	Latour,	2012; 
Verspagen et al., 2004). The transfer of quiescent vegetative cells of 
Microcystis sp. from the sediment to air- water interface may occur 
through passive processes (e.g. thermocline turnover), active processes 
(e.g. changes in density), or a combination (Verspagen et al., 2004). 
Active cell- mediated processes leading to the transfer of quiescent veg-
etative cells of Microcystis sp. have been explored using field collected 
sediments containing overwintering colonies. Verspagen et al. (2004) 
and Borges et al. (2016) report changes in cell buoyancy throughout 
the year. In terms of the impact of physical mixing of sediments and 
how that could relate to increased growth rates of Microcystis sp. cells, 
there	are	limited	data.	Misson	and	Latour	(2012) discerned greater ra-
tios of Microcystis sp. cells in overlying water relative to sediments in 
treatments where experimental chambers containing field collected 
sediment samples and filtered site water were inverted relative to 
chambers where intentional mixing did not occur. Therefore, these 
data suggest that mixing at the sediment–water interface may increase 
growth rates of quiescent vegetative cells of Microcystis sp.

5.5  |  Dissolved oxygen

Data relevant to dissolved oxygen concentrations as drivers 
for growth of quiescent vegetative cells of Microcystis sp. are 
limited. Harris and Trimbee (1986) observed a correlation be-
tween	 a	 decrease	 in	 dissolved	 oxygen	 (minimum	 of	 0–1 mg	O2/L) 

concentrations followed 10- day later by a shift in algal abundance 
to mostly Microcystis sp. Initial dissolved oxygen concentrations of 
1	 to	4 mg	O2/L resulted in the greatest rate of increase in colony 
densities ([colony/mL]/day) of Microcystis sp. observed by Reynolds 
et al. (1981).

6  |  APPLIC ATION TO MANAGEMENT

6.1  |  Identification of areas of concern

Areas of concern refer to sediments containing overwintering cells 
that have the potential to provide an inoculum for a HAB. Areas of 
concern are defined as locations in which viable overwintering cells 
are present and suitable environmental conditions exist at the sedi-
ment–water interface to trigger germination and growth (Calomeni 
et al., 2022; Rolland & Vincent, 2014; Figure 3).

To identify areas of concern for akinetes, a critical environmental 
condition to monitor would be light intensities (Huber, 1985; Karlsson- 
Elfgren et al., 2004; Kim et al., 2005; Rai & Pandey, 1981; Sutherland 
et al., 1985; Yamamoto, 1976). Ramm et al. (2017) similarly hypothe-
sized that although akinete abundance increased with depth, there 
was a maximum water column depth in which sufficient light reached 
akinetes allowing for germination and akinetes located at greater 
depths were incapable of germination. Results from this literature re-
view can be used to inform in situ monitoring by understanding ranges 
of light intensities that may result in germination. However, to trans-
fer results from the laboratory to in situ monitoring, light attenuation 
needs to be considered. In the laboratory, the experimental chambers 
had small water volumes (i.e. μL to mL) and consequently light atten-
uation would be low. Therefore, light intensities reported in the lab-
oratory experiments are likely directly comparable to light measured 
at the sediment–water interface and would not require correction 
for light attenuation in the water column if measured at this location. 
Alternatively, if light is measured at the air- water interface, correction 
for light attenuation through the water column is necessary.

For quiescent vegetative cells of Microcystis sp., temperature at 
the sediment–water interface could be used to inform observations 
of increases in cell densities in situ (Borges et al., 2016; Reynolds & 
Walsby, 1975; Yang et al., 2020). In situ, an increased growth rate in 
Microcystis sp. cell densities would be anticipated at temperatures 
ranging from 15°C to 35°C; with the greatest growth rates occurring 
at 20°C to 30°C (Yang et al., 2020).	Measurements	of	the	nutrients,	
nitrate, ammonia and phosphate and light at the sediment–water in-
terface may provide predictive capability for growth rates of quies-
cent vegetative cells of Microcystis sp.

There were numerous studies pertaining to light and tempera-
ture as drivers for overwintering cell germination and growth. In 
contrast, data pertaining to nutrient concentrations were limited for 
both akinetes and quiescent vegetative cells. The identified ranges of 
environmental conditions can be used to inform in situ monitoring by 
identifying potential zones that may contribute to HABs. However, 
environmental conditions outside of these ranges may also result 
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in overwintering cell germination and growth. Responses of cyano-
bacteria to conditions in their environment may be species, site and 
ecotype specific. This was evident for Dolichospermum flos- aquae 
akinete germination, as one study identified maximum germination 
at 10°C (Kim et al., 2005) while another study identified maximum 
Dolichospermum cicinale akinete germination at 22°C (Fay, 1988). 
Ranges identified in the peer- reviewed literature and summarized 
here can be used to develop hypotheses regarding potential zones 
for HAB development, while further monitoring and experimenta-
tion can be used to refine ranges at specific sites.

6.2  |  Measuring responses to management

For overwintering cyanobacteria, presence does not equate 
to the potential for germination, growth, transfer to the water 
column and HAB formation. Identification and enumeration of 
overwintering cells provides an estimate of the number of cells 
that are present at one point in time. A proportion of the iden-
tified overwintering cells may later degrade without transferring 
to the water column as vegetative cells (Ramm et al., 2017). To 
provide evidence of the growth potential of overwintering cells, 
laboratory experiments can be performed in which site collected 
sediments containing overwintering cells are placed in environ-
mental chambers under conditions suitable for growth, termed 
incubation (Calomeni et al., 2023; Gangi et al., 2020; Rolland & 
Vincent, 2014; Wood et al., 2008). Following an incubation period 
(e.g.	10–14 days),	overwintering	cell	densities	are	measured	in	the	
sediment and water phases to discern the potential for growth. 
These studies can be used to ask several questions. These ques-
tions include, (1) what cyanobacteria genera currently have the 
potential to transfer to the water column?, (2) how does planktonic 
growth potential at a site change throughout a year or following a 
growing season?, (3) how does planktonic growth potential change 

throughout a water body?, (4) how does the planktonic growth po-
tential at a site change following management actions?

Environmental conditions used for incubation studies should 
range as a function of the research question. If the goal is to under-
stand if management action was capable of decreasing planktonic 
growth rates, environmental conditions resulting in maximum ger-
mination and growth that are realistic for the site should be used. As 
an example, targeted environmental conditions for akinetes could 
be	100 μmol m−2 s−1	and	27°C.	Since	the	results	from	this	 literature	
review suggest that nutrients are an unlikely trigger for germination, 
site collected sediments and water may be used without additional 
nutrient amendment.

F I G U R E  3 Characteristics	of	areas	
of concern or areas that may serve as 
an inoculum for harmful algal bloom 
formation. Areas of concern would 
contain overwintering cells (i.e. akinetes of 
Nostocales and quiescent vegetative cells 
of cyanobacteria such as Microcystis sp. 
and Planktothix sp.) and have favourable 
environmental conditions co- occurring.

TA B L E  4 Future	research	questions	or	data	gaps	related	to	
preventative management of overwintering cyanobacteria.

Topic Future research questions/data gaps

Problem formulation/
characterization

How prevalent are overwintering cells in 
HAB impacted water bodies?

What is the relative contribution of 
overwintering cells from sediments 
versus allochthonous sources in HAB 
formation?

Planning and 
prioritization

How do you identify candidate sites for 
preventative management?

How do you prioritize candidate sites for 
preventative management?

Management What chemical, physical, or biological 
techniques are effective at managing 
overwintering cells?

How can overwintering cells be practically 
managed in the field?

What scale is appropriate for the 
management of overwintering cells?
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7  |  FUTURE RESE ARCH NEEDS

To preventatively manage overwintering cyanobacteria in sediments 
within freshwater resources that experience seasonal HABs, addi-
tional data gaps need to be addressed (Table 4). Data are needed 
to improve our understanding of the extent in which overwinter-
ing cells can impact HAB formation. To plan and prioritize candidate 
sites for management, decision criteria are needed to inform site 
selection. To manage overwintering cell, experiments designed to 
understand the efficacy of physical, chemical and biological mitiga-
tion techniques are needed.

8  |  CONCLUSIONS

Preventative management to decrease the planktonic growth of 
overwintering cyanobacteria in sediment prior to HAB forma-
tion is an attractive strategy to lessen human and ecological risks 
and economic impacts. This literature review informs methods 
for quantifying overwintering cells in sediment and assessing 
their potential to transfer to the water column where they could 
contribute	 to	HAB	formation.	Methods	 for	sampling	overwinter-
ing cells are like those used for sediment collection and can be 
conducted using equipment such as an Eckman or Ponar dredge. 
Overwintering cells can be separated from sediments for iden-
tification and enumeration using dilution, particle and density 
separation.

Environmental conditions that trigger the germination of aki-
netes and the growth of quiescent vegetative cells of Microcystis 
sp. are critical to understand to assess the potential for cells to ger-
minate (i.e. for akinetes) and grow. Relatively low light intensities 
(e.g.	0.5 μmol m−2 s−1) at the sediment–water interface are a critical 
trigger for akinete germination while, temperatures between 20°C 
to 30°C resulted in rapid growth rates of overwintering Microcystis 
sp. These data can be used to inform incubation studies designed 
to discern the potential for overwintering cells to transfer to the 
water column as well as discern responses of overwintering cells 
to management.
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